NONLINEAR FILTRATION OF A LIQUID SUBJECT
TO A POWER RESISTANCE LAW

V. I. Voronin and V. V. Samokhvalov UDC 532.546

A method of solving the plane problem for the nonlinear filtration of an incompressible liquid
is proposed, assuming a power-type law of resistance, with rectilinear boundaries of the
region of motion. The method is demonstrated for the case of filtration through a uniformly-
porous wedge.

S. A, Khristianovich [1] first indicated the possibility of using the hodograph of S, A. Chaplygin [2]
for studying nonlinear problems in filtration theory. This method was later used with success in (3, 4, 6].

The steady-state motion of an incompressible liquid in a porous medium characterized by a power
resistance law is described by the equations:
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If in system (1) we transform to Chaplygin variables and put
0 = exp (v/3 n 4 1); b= Qexp(n 2V n 1), (2)

for the function Q we obtain the Helmholtz equation

Q.

ap* I 4(n+ 1)

Let the liquid filter through a wedge ABCD (Fig. 1) with a base angle8;,. Let us assume that on the
face AC P = P,;> 0, on the faces AB and BC P =P, =0, and at the point D v =v, (7 = 0), It is physically
obvious that at the vertices A and C v =« (T ==). At the point B, as in linear filtration, we may con-~
sider that v =0 (T =—o). In the variables 7 the region of filtration appears in the form of an infinite strip
2B, wide with a slot along the positive semiaxis of T (Fig. 1). Owing to the presence of the slot (discon-
tinuity), the function @ is not single-sheeted in this region. It is therefore appropriate to limit considera-
tion to the upper part of the strip with 8, = 8 = 0; inside this region Q is single-sheeted.

Q=0. (3)

At the internal points of the region ABD Q is finite. Despite the singularities at points A and B, Q is
absolutely integrable with respect to the variable 7. This may be established from a physical consideration
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Fig. 1. Region of filtration.
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of the character of the singularities at points A and B. Thus with respect to the function Q a Fourier trans-
formation with respect to the variable T may be applied in the region of filtration.

For the Fourier transform

Q= [o@ pen(—iryaz

we obtain the differential equation

‘32@ 20y 2 A2 L n
g0 (¢t ‘4(n+1>)

with boundary conditions
_ [Qw = [ Qe 0exp(—irgds for 0,
lo ) for B =Py,
the' solution of which takes the form
Q=0 (chqPp —cthq Beshqp). (5)

The original for Q is determined by the inverse Fourier transformation formula
1 (-
Q:—%jQ(x)(chqﬁ~cthqﬁoshqﬁ)expi7wdl. (6)

Equation (4) contains the as-yet unknown function Q(¢, 0). In order to determine this we must satisfy the
condition ‘

0Q/OB =0 for P=0, 1<0. (7

In the plane of the half wedge (Fig. 1) let us consider the line 7 = const. For 7 < 0 we find y, and y,
by moving successively from point b to point b* with 7 = const, and then with § = 3, along the face of the
wedge from b' to A. We shall make use of the Chaplygin equations
dx ! cos B dP L pd ¥

=—0 ——sin :
+1 4
w X ®)
dy = —W Sll’lﬁdp + —5*COSﬁd1P‘.

In determining y,; we use the second of Egs. (8), carrying the integration with respect to 8 from 0 to
By. In this we employ Eq. (6), changing the order of integration with respect to A and 3. In calculating y,
we carry out an integration of the second of Eqgs. (8) with g = 3, for T values between 7 and ». As before
we use (6) with a change in the order of integration with respect to 7 and A. Since according to (7) we
should have y; +y, =d, we now find

i m__qgllq_ﬁo_— A iATdh = —Fex n—lir. 9
2n5‘;\,+i_”+2 Qexpite Vn+1 p2Vn+1 ®)
- 2 n 41

The resultant Fourier — Fredholm equation serves to determine the unknown Q(¢, 0) for 7 < 0.

Let us denote the right-hand side of Eq, (9) for any 7(—« < T < =) and put

% n42
Vn+leXp 2Vn+1
0

T (t<<0),

() =

(x> 0).
We express (7) in the form of a sum

) =, (1) + 9@

Here the unknown function
P, (1) =0 for 7<0.
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We further introduce the notation

where
© 0
T = Q& Oexp(—ir)dE T (W)= [ Q& 0)exp(—irDdE;
] —0o

@ 0
V.0 = | b, @exp(—ir)dE v = | y_@exp(—irp)d
0 —co
It is obvious that

0 ;\, LX 1) }\, :M——i—:‘_‘—,-.
V- = ntlA+i(n+22Vn+1] $ Q) h—in/2) n + 1

If we put

. n+2
K — A e ]

Eq. (9) may be written in the form
o K(*) %
K }\/) Q_ A —1 — =
(M) Q_ (%) A—in2Vn 41 (7»—{—; nt2
2y n-+1
We study Eq. (10) by the Wiener—Hopf method [5]. First let us factorize the meromorphic function
K(A). Putting

i), (10)

KA =g, (M)e_(),

where ¢, +(A) and @_ () are whole functions not having zeros in the lower half plane (including the real axis)
and the upper half plane (also embracing the real axis) respectively, we easily find that

= A

A —is,)exp —

) BQk—l( i) exp
P, (M) ="=

l:[—l A —ir,)ex A
17 1) €XP —

iy

ﬁ 5i 7 Ok isu) exp (——j—)

bo(r) = = o 1

@®

' o2\
nki(i»—l—irk)exp (-—-%) ﬁ(,(}w}%ﬁ)

k=1 k

Here

_ B a? o l/ (2k — 1)x? n
=] YA B it D)

Since the series E T —8) /TS| converges, another factorization is permissible:
k=1

. 1
K{)=9_MNe, ) W—,

Yoyntl

where

T % his, ok A—is,
q’“mHE % —1 htir o, (M) = kE[ %—1 h—ir

Equation (10) may now be written in the form

[Q_ (M) —

) = X iV, (A) (7»—}—;’ nt2 ) (11)

i
h—in/2) n+ 1 ](P’ e, MVn+1 o.M 2V n+1
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Qx,0) - The left~-hand side of Eq. (11) has a pole at the point A = in/Z\f(n
+1) inthe upper plane with a certain multiplicity m. If we multi-
a8 ply (11) by (A~in/2vn + 1)/ we obtain functions on the left and

‘ right which are regular in the upper and lower half plane respec-
tively and also coincident and regular in a certain strip including

o the real axis. Thus, starting from the principle of analytical
\ / 2 continuation, we find that the result of the multiplication of (11)
\& by (A—in/2Vn + 1)™ constitutes a whole function over all the
A plane; since in the half planes of regularity Q_(A) = O(1 /A);
0 % 6 12 T D) =0(1/N); @A) = O(VA); (1) = O(VA), this function may
Fig, 2. Curves of the function Q(7, be expressed by a polynomial of degree m—1 containing m
0) (1< 0): 1), =m/4; 2) By =7/6. parameters, Since Q_(7, 0) should satisfy two conditions, namely

1) the residue of Q_(3) at the point A =in/2vn + 1 should be zero,

otherwise as T — —w Q_(T, 0) would be of the order of exp (nr
/2Vn +1) —«; and 2) Q(0, 0) =1, we find that the polynomial should contain altogether two parameters.
This means a polynomial of the first degree.

Thus we have:

= i + ib

M= o+ - 12
®) A—in/2vn+1 (h—in/2V n+ 1Po_() (2
In view of the realness of Q_(7, 0), « and b are here real parameters, Allowing for condition 1) we obtain
from (12): ,

o_(in/21 n4-1) bn 9L (in/2v n+1) ib _0

oo (in/2vn+ 1) 2vnF+1¢-(n2Va+1) ¢_(@n2yn+1)

If we introduce a function of the real variable z = 0

-]

O, n, B) = n

k=1

2%k—1 z+4r,
2k z+s,

instead of the preceding equation we may write
— o® (n/2 D)+ b [#_ﬁ @ (n2Vn + 1) —®(n/2) 0+ ) ] =1 (13)
Vv r

Since in the lower half plane Q_(A) = O(1/2), the original for the function Q_()\) may be obtained by using
the residue theorem. Since Q_(A\) has simple poles at the points A = sy, on considering condition 1) we
have

exp s, T

1 (- a N\
—_ . iATd A = — ——=
Q_(v, 0) %SQ— (M) expih B2 ,Z:l (s, + /2 1 + 15, D (s,)

b \ exps, T .
Bt ; ot /2 Vi + 1D (sy) (14)
Using condition 2) we obtain
fo=a 1 — b 2 L : (15)
(s, + n/2 v n 4 175, 0 (s Gp 12V 0+ PO (s,)
1

e )

The system of equations (13), (15) determines the values of ¢ and b:

B*ﬁﬁ{m(n/wm.« i) — (2 T 1)J

2vn+1 .
Q= — ’
A[@(n/?l/ﬁ iy S L Py ) Vgn 1)“ BD (n/2V n+ 1)
2Vn+1
(16)
b . A+ B® (/20 1+ 1)
A [CD(n/Qy’ n4-1)— " w 2V n+ 1) J+BC_D'(n/2]/n + 1
2V n+1
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where

\ 1 1
= — ; B= S— .
E (sp +n/2 Vi + 1)s, D(s,) Z (s, +n/2y n+ 12D (s,)

In order to determine the filtration parameter x, we use the expression for dx on the symmetry axis:

A n n+2 0[Q_ (v, 0)] +2
pdx = — ——o0-Q_(1, O)ex <—~———/ r)drw“ . 1
e R WS Vo ot ( 2;/n+1 a7
Integrating Eq. (17) with respect to 7 from 0 to —« and using (14) we obtain
—b
¥ = ctg2[30 E : — a— bs, — (18)
Po dand (5, —n/2V n+ 1) (sk e 1)sh(D(sh)

Figure 2 shows the curves of Q(7, 0) for n =1 and 8, = 7/4; 8, = v/6. In these cases the parameter x re-
spectively equalled 1.99 and 3.55.

NOTATION

v is the filtration velocity;

Vg =Ve€os B, vy =vsinf its projections on the coordinate axes;

B is the angle between the filtration velocity vector and the Dx axis;

vy is the characteristic velocity;

i =V /vy, T’x =Vx/Vy, are the dimensionless velocity and its projections on the coordinate axes;

Vy = Vy/Vy

P is the pressure;

Py is the characteristic pressure;

D= P/P, is the dimensionless pressure;

d is the characteristic dimension;

X=x/d, ¥=y/d are the dimensionless coordinates;

n=0 is the degree of filtration; at n = 0 the filtration obeys the D'Arcy law, at
n > 0 the filtration is nonlinear;

o is the constant of power-law filtration depending on the physical properties
of the porous material;

x =vi /P is the dimensionless filtration parameter;

¥ is the current fungtion;

A is the Fourier parameter,
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